AusGeoff wrote on Oct 31
st, 2022 at 9:53am:
LOL...
Trying to meaningfully debate COVID and its vaccinations with the
anti-vaxxers here is like discussing string theory with a garden snail.
(With apologies to garden snails everywhere.)
Morning Dopey I see you survived another night, oh well there is always tonight for that blood clot to kick in.
Anyway time for a biology lesson for you, seeing as you think you are the know all virus expert in Australia.
The following will explain a bit more in detail what a virus is, more importantly what it isn't and how the body deals with it. You may want to go out into your garden and find a slug to explain it to you as I know this is far beyond your comprehension.
What is a Virus?
"A virus is a pathogenic, parasitic organism that isn’t classified as being alive, since a cell is an essential to our definition of life. A virus has no cell membrane, no metabolism, no respiration and cannot replicate outside of a living cell. A virus is a creepy half-live, single strand or double strand of DNA or RNA or both, looking for a cell to invade. Once inside, it reprograms the cell with its DNA or RNA and multiplies on mass, bursting through the cell with a thousand or more new virus strands seeking new cells to invade. RNA viruses mutate more easily than DNA viruses. (SARS, bird flu, West Nile virus, swine flu, hepatitis, measles, polio, yellow fever, and Ebola are among the many RNA viruses).
If two viruses invade the same cell (a bird virus and a human virus, for instance) their DNA can combine to form a new virus, a potentially virulent one. The same is true if two animal viruses combine and jump species to humans.
Viruses have two life cycles: the lytic cycle and the lysogenic cycle.
Lytic Cycle
In the lytic cycle, the virus focuses on reproduction. It invades a cell, inserts its DNA and creates thousands of copies of itself, bursts through the cell membrane, killing the cell, and each new viral strand invades new cells replicating the process.
Lysogenic Cycle
In the lysogenic cycle, viruses remain dormant within its host cells. The virus may remain dormant for years. Herpes and chickenpox are good examples. (Chicken pox can cause shingles in later life when the dormant virus reactivates.)
How Does the Body Fight a Virus?
Our bodies fight off invading organisms, including viruses, all the time. Our first line of defense is the skin, mucous, and stomach acid. If we inhale a virus, mucous traps it and tries to expel it. If it is swallowed, stomach acid may kill it. If the virus gets past the first line of defense, the innate immune system comes into play. The phagocytes wage war and release interferon to protect surrounding cells. If they cannot destroy the invading force, the phagocytes call the lymphocytes into play.
Our lymphocytes, T cells and B cells, retain a memory of any previous infection that was serious enough to bring them into the battle. Antibodies were formed and the body knows how to fight any infection it recognizes. (This is how vaccinations work. The body has fought a similar infection). But viruses can mutate, sometimes so much that they body cannot recognize them as a similar infection they fought in the past. They can also be so fast acting, they can kill before the lymphocytes are brought into play.
Viral infections are a symptom of a weak immune system. Your immune system is wholly dependant on your gut health. A sick gut has an abundance of fungi and other pathogens, and a healthy gut has a wide variety of beneficial bacteria. A healthy nutrient dense diet, a healthy lifestyle, and a body void of as many toxins as possible is the first and foremost defense.